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Abstract

The basic principle of feedforward noise cancellation for broadband active noise reduction is based on
the availability of a reliable measurement of the noise source. Reliability is compromised in case the noise
measurement is acoustically coupled to the actual active noise cancellation (ANC), as stability and
performance of the feedforward compensation becomes ambiguous. This paper presents a framework to
recursively estimate a feedforward filter in the presence of acoustic coupling, addressing both stability and
performance of the active feedforward noise cancellation algorithm. The framework is based on fractional
model representations in which a feedforward filter is parameterized by coprime factorization. Conditions
on the parameterization of the coprime factorization formulated by the existence of a stable perturbation
enables stability in the presence of acoustic coupling. In addition, the paper shows how the stable
perturbation can be estimated on-line via a recursive least-squares estimation of a generalized FIR filter to
improve the performance of the feedforward filter for ANC.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In application of active noise cancellation (ANC) a feedforward filter has been widely used for
broadband noise cancellation [1–4]. In case the noise measurement in feedforward compensation
see front matter r 2005 Elsevier Ltd. All rights reserved.
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is not influenced by the feedforward control signal, feedforward ANC provides an effective
resource to create a controlled emission for active sound attenuation. Algorithms based on
recursive (filtered) least mean squares (LMS) minimization [5] can be quite effective for the
estimation and self-tuning of feedforward-based sound cancellation [6]. To facilitate an output-
error-based affine optimization of the feedforward compensation, a linearly parameterized finite
impulse response (FIR) filter [2] is widely used for the recursive estimation and adaptation.
Unfortunately, in many ANC systems a strong acoustic coupling may be present, indicating that

the noise measurement in feedforward compensation is influenced by the ANC signal. From a
control point of view, the ANC system will no longer be a pure feedforward ANC system, because a
positive feedback induced by acoustic coupling tends to destabilize the ANC system [7]. Therefore,
modifications to the control algorithm have to be made to stabilize the feedforward-based ANC
system as indicated for example in Refs. [3,8]. Techniques to deal with acoustic coupling can be
hardware based: dual-microphone reference sensing, motional feedback loudspeakers and
directional microphones and loudspeakers or control based: feedback neutralization filter, filter-u
LMS method and the use of distributed parameter models. In addition, a control synthesis method
such as H1 optimal control can also be used to design feedforward filter, as the acoustic coupling
can automatically be incorporated during the design process [9].
In this paper, a new approach is adopted for the estimation of a feedforward filter in an ANC

system, where the feedforward filter is estimated using coprime factors [10–12]. The coprime
factor approach allows for a parameterization of all stabilizing feedforward filters using
knowledge of the acoustic coupling in the ANC system. For the parameterization of the
feedforward filter only a initial (low order) feedforward filter is needed that is known to be stable
in the presence of the acoustic coupling. Subsequently, the performance of the stabilizing
feedforward filter is optimized by minimizing the error signal in the ANC system via the
estimation of a stable perturbation on the coprime factors. The stable perturbation on the
coprime factors is also known as a dual-Youla parameterization [13–15].
The estimation of the stable perturbation is posed as an output-error system identification

problem, in which the dual-Youla transfer function is parameterized by a generalized FIR filter
[16]. Using the generalized FIR filter structure, an output error recursive least-squares (RLS)
estimation is applied to facilitate the on-line self-tuning of the feedforward compensation. Since
the self-tuning of the feedforward filter is done within the coprime factor framework using a dual-
Youla parameterization, stability in the presence of acoustic coupling can be maintained while
optimizing the performance of the feedforward filter for noise cancellation. The theoretical
contributions of this paper are illustrated by the actual modeling and implementation of this
algorithm on an active sound silencer for an air-ventilation system. It is shown that a stabilizing
feedforward filter can be estimated in the presence of a strong acoustic coupling and the ANC
system demonstrates the effect of noise cancellation over a broad frequency range from 30 till
400Hz.
2. Analysis of feedforward compensation

In order to analyze the design of the feedforward filter F , consider the schematic representation
of a linear airduct which is depicted in Fig. 1. Sound waves from an external noise source are
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Fig. 1. Schematics of feedforward-based ANC system.
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Fig. 2. Block diagram of ANC system with feedforward and acoustic coupling.
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predominantly traveling from right to left and can be measured by the pick-up microphone at the
inlet and the error microphone at the outlet.
In the ANC system described in Fig. 1, the control signal yðtÞ is generated by processing uðtÞ

with a feedforward filter F to cancel the noise acoustically in the airduct. Because the control
speaker in the airduct will generate plane waves propagating both upstream and downstream, the
control signal yðtÞ to the control speaker not only cancels noise downstream, but also radiates
upstream to the input microphone and interferes with the reference signal uðtÞ. The coupling of the
acoustic waves from the control speaker to the input microphone is denoted by acoustic coupling.
The block diagram that models the dynamical relationships between the signals in the ANC is

given in Fig. 2. Following this block diagram, dynamical relationship between signals in the ANC
system are characterized by discrete time transfer functions, with qdðtÞ ¼ dðtþ 1Þ indicating a unit
step time delay, and q is a shift operator. For notational convenience, the shift operator q will be
dropped in most of the remaining part of the paper.
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The spectrum of noise disturbance dðtÞ at the input microphone is characterized by filtered
white-noise signal nðtÞ, where W ðqÞ is a (unknown) stable and stable invertible noise filter [17]. The
dynamic relationship between the input dðtÞ and the error microphone signals eðtÞ is characterized
by the primary noise path HðqÞ, whereas the acoustic control path GðqÞ characterizes the
relationship between control speaker signal yðtÞ and error microphone signal eðtÞ. Finally, GcðqÞ is
used to indicate the acoustic coupling from the control speaker signal yðtÞ back to the input
microphone signal dðtÞ.
The error microphone signal eðtÞ can be described by

eðtÞ ¼ HðqÞ þ
GðqÞFðqÞ

1� GcðqÞF ðqÞ

� �
dðtÞ

¼ HðqÞdðtÞ þ
F ðqÞ

1� GcðqÞF ðqÞ
� GðqÞdðtÞ ð1Þ

and definition of the signals

vðtÞ:¼HðqÞdðtÞ; rðtÞ:¼GðqÞdðtÞ (2)

leads to

eðtÞ ¼ vðtÞ þ
F ðqÞ

1� GcðqÞFðqÞ
rðtÞ

¼ vðtÞ þ LðqÞrðtÞ LðqÞ:¼
FðqÞ

1� GcðqÞF ðqÞ
. ð3Þ

From Eq. (3) it can be seen that the acoustic coupling GcðqÞ creates a positive feedback loop with
the feedforward filter F ðqÞ. The presence of the acoustic coupling GcðqÞ might lead to an
undesirable or unstable feedforward compensation if GcðqÞ is not taken into account in the design
of the feedforward filter F ðqÞ for ANC [7]. To address the issues of stability it can be noted that
certain signals can be used for estimation purposes of the dynamics of the various transfer
functions in the ANC system. In case the signals vðtÞ can be measured and the signal rðtÞ can be
created by filtering the measured signal dðtÞ through a filter that models the dynamics of the
acoustic control path GðqÞ, the estimation of the feedforward filter FðqÞ can be considered as a
closed-loop identification problem, where the error eðt; yÞ

eðt; yÞ ¼ vðtÞ þ Lðq; yÞrðtÞ

is minimized according to

ŷ ¼ min
y
keðt; yÞk2. (4)

In case the design of the feedforward filter is an off-line estimation, the signal vðtÞ can be measured
by performing an experiment using the external noise as excitation signal and measuring the error
microphone signal as vðtÞ. However, for an on-line feedforward filter adaptation, the signal vðtÞ is
not available during the operation of ANC because it is intended to be cancelled by the control
path noise. Therefore, we need to estimate the signal vðtÞ by

vðtÞ ¼ eðtÞ � ĜðqÞyðtÞ (5)

and use it as reference signal for feedforward filter.
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Minimization of keðt; yÞk2 in Eq. (4) is an output error-based identification problem [17]. In this
paper, the presence of acoustic coupling Gc during the estimation of FðqÞ is taken into account by
using a model Ĝc of the acoustic coupling. Using a model Ĝc, the estimation and computation of
F can be done in several ways.
The first possibility is an indirect identification method, where the closed-loop transfer function

L̂ ¼ Lðq; ŷÞ is estimated. Subsequently, the feedforward filter F̂ ¼ F ðq; ŷÞ is computed via

F̂ ¼
L̂

1þ L̂Ĝc

. (6)

The model F̂ can be computed only in the case that the inverse of ð1þ L̂ĜcÞ is well-defined.
Provided the computed F̂ in Eq. (6) is stable, stability of the estimate L̂ implies stability of the
feedback connection TðF̂ ; ĜcÞ of the feedforward filter F̂ and the model of the acoustic coupling
Ĝc. Stability of L̂ can be enforced during output error optimization, but stability of F̂ cannot be
guaranteed with this indirect estimation method.
A second possibility is to use a tailor-made parameterization of the closed-loop transfer

function [18,19]. In that case Lðq; yÞ is parameterized via

Lðq; yÞ:¼
Fðq; yÞ

1� ĜcðqÞF ðq; yÞ

and the minimization in Eq. (4) would require a nonlinear optimization over a intricate restricted
model structure. Although, gradient expression for the nonlinear optimization are available [19],
such an optimization will be hard to implement in a real-time adaptive filter estimation of the
feedforward filter.
Closely related to the use of a tailor-made parameterization is the third possibility exploited in

this paper, which is an estimation based on a so-called dual-Youla parameterization. This will be
discussed in Section 3 and opens a possibility to guarantee the internal stability of TðF̂ ; ĜcÞ by
constructing a feedforward filter F̂ via estimation of a stable dual-Youla transfer function.
3. Dual-Youla parameterization

3.1. Structure of feedforward filter via coprime factorization

Using the theory of fractional representations, a feedforward filter F ðqÞ can be expressed by
F ðqÞ ¼ NðqÞDðqÞ�1, where NðqÞ and DðqÞ are two stable mappings. Referring to Refs. [20,21], the
following definitions are used in this paper.

Definition 1. Let NðqÞ;DðqÞ 2 RH1 (where RH1 indicates the set of all rational stable transfer
functions), the pair ðNðqÞ;DðqÞÞ is called a right coprime factorization (rcf), if there exists
X r;Y r 2 RH1, such that X rN þ Y rD ¼ I . Similarly, ~NðqÞ; ~DðqÞ 2 RH1 are left coprime
factorization (lcf), if there exists X l ;Y l 2 RH1, such that X l

~N þ Y l
~D ¼ I .

Definition 2. Let NðqÞ;DðqÞ be a rcf, then the pair ðNðqÞ;DðqÞÞ is a rcf of a filter F ðqÞ if
detfDðqÞga0 and F ðqÞ ¼ NðqÞDðqÞ�1. Similarly, a lcf of F ðqÞ has the form F ðqÞ ¼ ~DðqÞ�1 ~NðqÞ,
where ~DðqÞ and ~NðqÞ are left-coprime over RH1.
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Using Definitions 1 and 2, a characterization of the set of feedforward filters FðqÞ ¼

NðqÞDðqÞ�1 ¼ ~DðqÞ�1 ~NðqÞ that yields an internally stable feedback connection TðF ðqÞ; ĜcðqÞÞ of
the feedforward filter FðqÞ and the model for the acoustic coupling ĜcðqÞ can be expressed via a
well-known dual-Youla parameterization [10,11,13–15] and is given in the following.

Lemma 1. Let ðNx;DxÞ be a rcf of an auxiliary feedforward filter Fx ¼ NxD�1x over RH1, and

ðNc;DcÞ be a rcf of the model Ĝc of the acoustic coupling Gc with Ĝc ¼ NcD
�1
c , such that

TðFx; ĜcÞ 2 RH1, then a feedforward filter F with a rcf ðN;DÞ satisfies TðF ; ĜcÞ 2 RH1 if and

only if there exists R0 2 RH1such that

N ¼ Nx þDcR0,

D ¼ Dx þNcR0. ð7Þ

The proof of this lemma is given in Appendix A. From Eq. (7) it is obtained that R0

can vary over all possible transfer functions in RH1 such that detfDx þDcR0ga0, which
characterizes a set of filters F that are internally stabilized by Ĝc. For the interpretation of the
result in Lemma 1, consider the following prior information to estimate the optimal feedforward
filter F .

Firstly, assume the availability of an initial (not optimal) feedforward controller Fx that is used
only to create a stable feedback connection TðFx; ĜcÞ in the presence of the acoustic coupling Gc.
Secondly, if a model Ĝc ¼ NcD

�1
c for the acoustic coupling Gc is available, then a set of

feedforward filters can be parameterized that is known to be stabilized by the model Ĝc of the
acoustic coupling. With this prior information, the optimal feedforward filter F to minimize
keðt; yÞk2 in Eq. (4) can be constructed by means of the nominal filter Fx plus a possible
perturbation R0 given by Eq. (7). Because R0 is the only unknown parameter, the estimation of a
stable model R̂ of R0 will yield an estimate ðN̂; D̂Þ of a rcf of the feedforward filter F̂ ¼ N̂D̂

�1

described by

N̂:¼Nx þDcR̂,

D̂:¼Dx þNcR̂. ð8Þ

If the estimate R̂ is stable, then the feedforward filter F̂ ¼ N̂D̂
�1

computed in Eq. (8) is
guaranteed to create a stable feedback connection with the model Ĝc of the acoustic coupling. In
this way, instabilities of the feedforward ANC can be avoided in the presence of acoustic coupling.

3.2. Estimation of dual-Youla transfer function

From Eq. (7), it is seen that the set of feedforward filters in Fig. 2 is parameterized by the rcf’s
ðNx;DxÞ, ðNc;DcÞ and the stable transfer function R0. The representation of the feedback
connectionTðF ;GcÞ in terms of the dual-Youla parameterization has been depicted in Fig. 3 with
the knowledge of Gc represented by the model Ĝc.
From Fig. 2 it can be seen that the acoustic control path G follows the feedforward filter F. In

order to ensure the accuracy of the LMS algorithm, an identical filter G is presented in the
reference signal path to filter the noise disturbance dðtÞ for LMS adaptation, which is shown in
Fig. 3. In practical ANC applications, G is unknown and must be estimated by a filter Ĝ.
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Therefore, the reference signal rðtÞ in Fig. 3 is given by

rðtÞ ¼ ĜðqÞdðtÞ. (9)

The output signal y1ðtÞ is defined as

y1ðtÞ:¼� vðtÞ, (10)

where vðtÞ can be obtained by performing an experiment to measure the error microphone signal
or by Eq. (5). The input signal u1ðtÞ is defined as

u1ðtÞ:¼rðtÞ þ ĜcðqÞy1ðtÞ, (11)

where Ĝc is the model of the acoustic feedback path Gc. The use of this filtered (closed-loop) input
signal is needed to address stability of the feedforward compensation in the presence of acoustic
coupling. The use of the filtered input signal u1ðtÞ is in addition to the filtering in Eq. (10) used in
filtered LMS estimation of feedforward filters. With the definition of these signals, the open-loop
estimate problem of the dual-Youla transfer function R0 can be formalized as follows.

Lemma 2. Let ðNx;DxÞ be a rcf of an auxiliary feedforward filter Fx ¼ NxD�1x and ðNc;DcÞ be a rcf
of the model Ĝc ¼ NcD

�1
c of the acoustic coupling Gc, such that TðFx; ĜcÞ 2 RH1. Then the

intermediate signals xðtÞ and zðtÞ are related by

zðtÞ ¼ R0ðqÞxðtÞ, (12)

where the intermediate input signal x is defined by the filter operation

x:¼ðDx � ĜcNxÞ
�1
½�Ĝc I �

y1

u1

" #
(13)

and dual-Youla signal z is defined by the filter operation

z:¼ðDc � FxNcÞ
�1
½I � Fx�

y1

u1

" #
, (14)

where the signals r, y1 and u1 are defined, respectively, in Eqs. (9)–(11).
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The proof of this lemma is given in Appendix B and from Eq. (12) it can be seen that the
estimation of a stable model R̂ ¼ Rðq; ŷÞ can be obtained via a standard output-error (OE)
minimization by

ŷ ¼ min
y
kzðtÞ � Rðq; yÞxðtÞk2 (15)

Although Eq. (12) and the proof of Lemma 2 indicate a noise-free open-loop identification
problem, the OE minimization in Eq. (15) is robust in the presence of possible measure-
ment noise enðtÞ on the error microphone signal eðtÞ. Under the viable assumption that
additional measurement noise enðtÞ on eðtÞ is uncorrelated with the signal dðtÞ from the
input microphone, it is easy to verify that the reference rðtÞ in Eq. (9) in uncorrelated with
enðtÞ. With

u1ðtÞ � ĜcðqÞy1ðtÞ ¼ rðtÞ ¼ ĜðqÞdðtÞ

it can be seen that the intermediate input signal xðtÞ in Eq. (13) is uncorrelated with enðtÞ, making
Eq. (15) a standard open-loop identification problem even in the presence of additional
measurement noise enðtÞ on the error microphone signal eðtÞ.
3.3. Robustness against modeling errors

The result in Lemma 1 states the following important result for ANC in the presence of acoustic
coupling. Provided the estimate R̂ is stable, the feedforward filter F̂ ¼ N̂D̂

�1
in the presence of the

acoustic coupling modeled by Ĝc, is guaranteed to create a stabilizing feedforward-based ANC
system. Obviously, this results only holds if Ĝc is an accurate model of the actual acoustic
coupling Gc in the ANC system. In case the model Ĝc is (only) an approximation of the actual
acoustic coupling Gc, robustness results with respect to modeling errors can be easily formulated
using the coprime factor framework.
Let ðNc;DcÞ be a rcf of the model Ĝc. Subsequently, consider ðNx;DxÞ as a rcf of an initial

feedforward filter Fx that is known to be stabilizing in the presence of the acoustic coupling, i.e.
the feedback connection of Gc and Fx is stable. The knowledge of the initial feedforward filter Fx

and the the model Ĝc can be used to characterize the uncertain rcf ðN̄c; D̄cÞ of the actual acoustic
coupling Gc as

N̄c:¼Nc þDxD,

D̄c:¼Dc þNxD, ð16Þ

where the uncertainty is characterized by a bounded but unknown D 2 RH1. Using the standard
small gain theorem, the following lemma concerning the robust stability with respect to the model
uncertainty D can be derived.

Lemma 3. Let the uncertain acoustic coupling Gc be given by Gc ¼ N̄cD̄
�1
c where the rcf ðN̄c; D̄cÞ is

given in Eq. (16). Consider a feedforward filter

F̂ ¼ ðNx þDcR̂ÞðDx þNcR̂Þ
�1
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similar as in Eq. (8). With D; R̂ 2 RH1 the feedback connection of the feedforward filter F̂ and the

actual acoustic coupling Gc is well posed and internally stable for all kDR̂k1o1.

The proof of this lemma is given in Appendix C. In the presence of a (coprime factor) modeling
uncertainty D, the condition of estimating a stable R̂ is further restricted to the condition that
kR̂Dk1o1. As expected, the robust stability condition limits the size of the stable R̂ in case of
large modeling errors.
3.4. Summary of feedforward estimation

Since the intermediate signal xðtÞ and the dual-Youla signal zðtÞ can be created by Eqs. (13) and
(14), the estimation of the dual-Youla transfer function R0 from Eq. (12) is an open-loop
identification problem that can be computed by standard system identification techniques [17].
For more information about the dual-Youla parameterization, please refer to Refs. [10–12] for
more details. As a result, the estimation of the feedforward filter F ðqÞ using the dual-Youla
parameterization can be summarized by the following steps.
(1)
 A model Ĝ of the acoustic control path G is needed for filtering purpose to create the reference
signal rðtÞ. The model Ĝ can be estimated via a standard open-loop identification by
performing an experiment using the control speaker signal yðtÞ as excitation signal and the
error microphone signal eðtÞ as output signal. Such a filtering is commonly used in filtered
LMS algorithms to avoid bias of the estimate of the feedforward filter [5].
(2)
 A model Ĝc of the acoustic coupling Gc is needed to design an initial nominal filter Fx ¼

NxD�1x to stabilize the acoustic feedback loop. The model Ĝc along with the initially stabilizing
Fx is used to parameterize the feedforward filter F according to Lemma 1. The model Ĝc can
be estimated via a standard open-loop identification by performing an experiment using the
control speaker signal yðtÞ as excitation signal and the input microphone signal dðtÞ as output
signal.
(3)
 With the models Ĝ, Ĝc and the initial feedforward filter Fx, the reference signal r, input signal
u1 and output signal y1 can be created. With these signals, the optimal feedforward filter F̂ can
be estimated by minimizing keðt; yÞk2 in Eq. (4) using the dual-Youla parameterization of the
filter F ðq; yÞ.
Although both the acoustic coupling Gc and the acoustic control path G require an additional
modeling effort for the implementation of the ANC, the use of the models Ĝ and Ĝc is beneficial
for the ANC system. Since in most ANC systems both the acoustic coupling Gc and the acoustic
control path G are fixed, adaptation of the feedforward filter F is not required to adjust for
varying acoustics. Furthermore, using both models Ĝ and Ĝc for filtering purposes can be seen as
a generalization of the filtering used in filtered LMS estimation techniques. In comparison, the
FXLMS method in Ref. [8] is not able to incorporate the acoustic coupling explicitly, which is
especially of importance when the acoustic coupling cannot be neglected. Similarly, the FULMS
method as listed in Ref. [8] does incorporate the acoustic coupling, but no (formal) guarantee on
the stability of the inherent feedback connection between the IIR filter and the acoustic coupling
can be given.
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4. Perturbation estimation via generalized FIR filter

By adopting the theory of dual-Youla parameterization, the design of optimal feedforward
controller F is transformed to the estimation of the perturbation R0 from Eq. (12) using a
standard open-loop OE identification technique [17]. It should be stated that the estimation of the
perturbation R0 depends on the initial feedforward filter Fx. In the unlikely event where the initial
feedforward filter Fx equals the optimal filter F̂ , R0 is equal to 0 and does not need to be updated.
Since the initial feedforward filter Fx is chosen only to stabilize the acoustic system in the presence
of acoustic coupling, further estimation of the perturbation R0 will improve the feedforward filter
to minimize the signal of the error microphone and the performance of the ANC system.
In general, the OE minimization of Eq. (15) is a nonlinear optimization but reduces to a convex

optimization problem in case Rðq; yÞ is parameterized linearly in the parameter y. Linearity in
the parameter y is also favorable for on-line recursive estimation of the filter. A linear
parameterization of Rðq; yÞ can be obtained by using a FIR filter

Rðq; yÞ ¼ Dþ
XN

k¼0

ykq�ðkþ1Þ, (17)

where D is a (possible) feedthrough term. Unfortunately, many parameters yk may be required to
approximate the perturbation R0 for an optimal feedforward filter F̂ . Especially for a complex
ANC with many lightly damped resonance modes, the use of FIR models is detrimental for the
performance of the system. To improve these aspects, generalized FIR filters can be used that are
based on orthonormal basis function expansions (ORTFIR) [22].
To improve the approximation properties of the perturbation R0, the linear combination of

tapped delay functions in the FIR filter of Eq. (17) are generalized to

Rðq; yÞ ¼ Dþ
XN

k¼0

ykVkðqÞ; y ¼ ½D y0 � � � yN �, (18)

where VkðqÞ are generalized (orthonormal) basis functions [22] and can be computed by

VkðqÞ ¼ ðqI � AÞ�1BPkðqÞ ¼ V0ðqÞP
kðqÞ, (19)

where PðqÞ is an all pass function which is built based on the possible prior knowledge of the
dynamics of the perturbation R0. For details on the construction of the functions VkðqÞ one is
referred to Refs. [22,16]. A block diagram of the generalized FIR filter RðqÞ in Eq. (18) is depicted
in Fig. 4 and it can be seen that it exhibits the same tapped delay line structure found in a
conventional FIR filter, where the difference lies in the use of more general basis functions VkðqÞ.
An important property and advantage of the generalized FIR filter is that knowledge of the

(desired) dynamical behavior can be incorporated in the basis function VkðqÞ. If a more elaborate
choice for the basis function VkðqÞ is incorporated, then Eq. (18) can exhibit better approximation
properties for a much smaller number of parameters than used in a conventional FIR filter.
Consequently, the accuracy of the model Rðq; yÞ of the stable dual-Youla transfer function R0 can
substantially increase over a standard FIR parameterization, when the same number of
parameters is estimated.
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To facilitate the use of the generalized FIR filter, the basis functions VkðqÞ in Eq. (19) have to
be selected. A low-order model for the basis functions will suffice, as the generalized FIR model
will be expanded on the basis of VkðqÞ to improve the accuracy of the feedforward compensator.
For the initialization of the parameterization of the generalized FIR model, an initial low-order
IIR model R̄ðqÞ ¼ Rðq; ȳÞ of the perturbation R0ðqÞ can be estimated using an OE-minimization

ȳ ¼ min
y
kzðtÞ � Rðq; yÞxðtÞk2 (20)

with the intermediate signal x and the dual-Youla signal z available from Eqs. (13) and (14). The
initial low-order IIR model R̄ðqÞ can be used to generate the basis functions VkðqÞ of the
generalized FIR filter. An input balanced state–space realization of the low-order model R̄ðqÞ is
used to construct the basis function VkðqÞ in Eq. (19). With the basis function VkðqÞ in place, the
linear parameterization of Rðq; yÞ in Eq. (18) is obtained.
Since the parameterization of Rðq; yÞ is based on the generalized FIR model, the intermediate

signal xðtÞ is filtered by the tapped delay line of basis functions

x̄kðtÞ ¼ VkðqÞxðtÞ; k ¼ 0; . . . ;N (21)

creating filtered intermediate signals x̄kðtÞ. With the generalized FIR filter expansion given in
Eq. (18), the relation between the signal zðtÞ in Eq. (14) and x̄kðtÞ in Eq. (21) can be rewritten in a
linear regression form

zðtÞ ¼ fT
ðtÞy; y ¼ ½D y0 � � � yN �

T, (22)

where fT
ðtÞ ¼ ½xðtÞ x̄T

0 ðtÞ � � � x̄T
NðtÞ� is the available input data vector and y is the parameter

vector of Rðq; yÞ in Eq. (18) to be estimated. Therefore, the parameters y can be estimated by RLS
algorithm with variable forgetting factor [23].
5. Application of feedforward ANC

5.1. Modeling of ANC system dynamics

The ACTA silencer depicted in Fig. 5 and located at the System Identification and Control
Laboratory at UCSD was used for the experimental verification of the proposed feedforward
noise cancellation. The system is a wall-isolated open-ended airduct with a diameter of 0.4m that
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Fig. 5. ACTA airduct silencer located in the System Identification and Control Laboratory at UCSD.
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holds an inner tube with a diameter of 0.2m diameter. The inner tube houses the control speaker
and the input and error microphones. The total length of the airduct is 1.2m, the input
microphone is located at the inlet and the error microphone is located at the outlet of the airduct.
The control speaker is also located at the outlet, approximately 0.15m inside the airduct. With
these dimensions, the cutoff frequency of this airduct can be calculated to be approximately
f ¼ 999Hz [24]. Experimental data and real-time digital control is implemented at a sampling
frequency of 2.56 kHz.
With the given mechanical and geometrical properties of the ANC system in Fig. 5, the acoustic

control path G and the acoustic coupling Gc both are fixed. For initialization and calibration of
ANC algorithm, the models of the acoustic control path G and the acoustic coupling Gc can be
identified off-line. Estimation of a model Ĝ can be done by performing an experiment using the
control speaker signal yðtÞ as excitation signal and the error microphone signal eðtÞ as output
signal. The same experiment can also be used to measure the input microphone signal dðtÞ as an
additional output to estimate the model of the acoustic coupling Gc. Because these models Ĝ and
Ĝc will be used to design nominal feedforward filter Fx and feedforward filter F̂ , the order of these
models should be controlled. In order to estimate a low-order feedforward filter F̂ , a 20th-order
ARX model Ĝ was estimated for filtering purpose and a 17th-order ARX model of Ĝc was
estimated for feedforward filter design purposes. The identification results of Ĝ and Ĝc can be
found in Figs. 6 and 7, respectively.

5.2. Estimation of basis function for dual-Youla transfer function

A low-order model R̂ is estimated to compute the basis functions VkðqÞ for the
parameterization and estimation of the dual-Youla transfer function R0. On the basis of the
model Ĝc a simple 2nd-order nominal feedforward filter Fx is pre-computed that internally
stabilize the positive feedback loop connection TðFx; ĜcÞ. The initial feedforward controller is
given by the discrete time transfer function

FxðqÞ ¼
�1:577qþ 1:611

q2 � 1:99qþ 0:9913
(23)

and is lightly damped 2nd-order system with one-step time delay and a resonance mode at
approximately 100 rad/s.
Given the experimental data and the prior information, consisting of the model Ĝ of the

acoustic control path G and the model Ĝc of acoustic coupling Gc, the filtered signals rðtÞ, y1ðtÞ
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Fig. 7. Amplitude Bode plot of spectral estimate of acoustic coupling Gc (solid) and 17th-order parameteric model Ĝc

(dashed).
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Fig. 6. Amplitude Bode plot of spectral estimate of acoustic control path G (solid) and 20th-order parameteric model Ĝ

(dashed).
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and u1ðtÞ can be created, respectively, via Eqs. (9)–(11). With the computation of a normalized
right coprime factorization ðNx;DxÞ and ðNc;DcÞ of the initial filter Fx and the model Ĝc, the
signals x and z can be created using Eqs. (13) and (14). With the intermediate input signal x and
the dual-Youla signal z a spectral estimate of the dual-Youla transfer function R0 can be
computed. The spectral estimate is plotted in Fig. 8 and compared with a simple 6th-order OE
model estimate R̄. The 6th-order OE model estimate R̄ is found by Eq. (20) using standard open-
loop identification technique [17] and will be used to generate the basis functions VkðqÞ in Eq. (19)
for the generalized FIR parameterization of Rðq; yÞ in Eq. (18).
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Fig. 8. Amplitude Bode plot of spectral estimate of dual-Youla transfer function R0 (solid) and 6th-order parameteric

model R̄ (dashed) used for basis function generation.
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From Fig. 8, it can be observed that the simple 6th-order model R̄ does not capture the spectral
estimate of the dual-Youla transfer function R0 very well. However, the model R̄ will be used only
to create the basis functions VkðqÞ in Eq. (19) for the orthonormal FIR expansion of the dual-
Youla transfer function. The generalized FIR parameterization of Rðq; yÞ in Eq. (18) will then
allow for a recursive estimation and self-tuning of the feedforward filter.

5.3. Application of feedforward ANC

The prior information reflected in the models Ĝ of the acoustic control path, Ĝc of the acoustic
coupling, the initial filter FxðqÞ and the basis functions VkðqÞ generated by the low-order model
R̄ðqÞ all serve as an initialization for the recursive estimation of the feedforward controller in the
presence of acoustic coupling.
For the recursive least-squares estimation of generalized FIR filter in Eq. (18) only N ¼ 3

parameters yi; i ¼ 0; . . . ; 3 were estimated. Since no feedthrough term was expected in the
feedforward filter, the feedthrough term D in Eq. (22) was set to D ¼ 0. With a 6th-order basis
functions VkðqÞ; k ¼ 0; . . . ; 3 generated by the low-order model R̄, each parameter yi 2 R1�6. As a
result a generalized FIR filter Rðq; yÞ of order 24 is estimated by minimizing the error signal eðtÞ

using a recursive least-squares estimation. The recursive estimation is implemented on a Pentium
II based personal computer system using a 12 AD/DA Quanser card a sampling time of 2.56 kHz.
From Figs. 6 and 7 it can be observed that the acoustic coupling Gc in the ANC system is

relatively large compared to the acoustic control path G. As a result, a straightforward
implementation of a filtered LMS algorithm for the computation of a 24th-order FIR filter leads
to an unstable feedforward ANC system, where harmonic oscillation are observed due to
destabilizing effects of the acoustic feedback path.
The performance of the feedforward compensator F̂ that is estimated recursively using a dual-

Youla parameterization with generalized FIR filters is confirmed by the estimate of the spectral
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content of the microphone error signal eðtÞ plotted in Fig. 9. The spectral content of the error
microphone signal has been reduced significantly by the feedforward compensator F̂ which is
estimated by the recursive least-squares dual-Youla parameterization in the frequency range from
40 till 400Hz.
A final confirmation of the performance of the ANC has been depicted in Fig. 10. The

significant reduction of the error microphone signal observed in the time-domain traces and the
norm of the signal displayed on the right part of Fig. 10 indicates the effectiveness of
the feedforward filter F̂ estimated via recursive least-squares dual-Youla parameterization
for feedforward sound compensation.
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Fig. 9. Spectral estimate of error microphone signal eðtÞ without ANC (solid) and with ANC (dashed) using

feedforward filter F̂ estimated via recursive least-squares dual-Youla parameterization.
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Fig. 10. Time trace of reduction of error microphone signal eðtÞ without ANC (top) and with ANC turned on at t ¼ 0

(bottom) using feedforward filter F̂ estimated via recursive least-squares dual-Youla parameterization.
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6. Conclusions

In this paper, a new methodology has been proposed for the active feedforward noise control
using a dual-Youla parameterization with recursive least-squares (RLS) estimation. In this new
approach the dual-Youla parameterization is used to incorporate the acoustic coupling to avoid
instabilities of the feedforward ANC. Moreover, generalized FIR filters based on orthonormal
basis function expansions can be used to efficiently parameterize and estimate the dual-Youla
transfer function. The linear parameterization obtained by generalized FIR filters also facilitates
the online RLS implementation using a variable forgetting factor.
The algorithm presented in this paper combines the dual-Youla parameterization to guarantee

stability in the presence of acoustic coupling with the generalized FIR filter for online recursive
least-squares (RLS) implementation. The algorithm does require prior information that include
models of acoustic control path and the acoustic coupling, but this information is a generalization
of the filtering used in filtered LMS estimation of feedforward filters.
The practical results of the algorithm are illustrated by an implementation on a commercial

silencer for an air-ventilation system. Using relative simple models 6th-order models for
initialization of the recursive estimation along with relatively accurate models for the acoustic
control and acoustic coupling path, excellent noise cancellation properties were obtained at a
broad low-frequency spectrum.
Appendix A. Proof of Lemma 1

Let ð ~Dx; ~NxÞ be a lcf of the filter Fx ¼ ~D
�1

x
~Nx, and ð ~Dc; ~NcÞ be a lcf of the model of acoustic

coupling Ĝc ¼ ~D
�1

c
~Nc, which satisfy the Bezout identifies

~DcDx � ~NcNx ¼ I ~DxDc � ~NxNc ¼ I . (A.1)

Moreover, it also satisfies

~Dc � ~Nc

� ~Nx
~Dx

" #
Dx Nc

Nx Dc

" #
¼

I 0

0 I

� �
. (A.2)

Then

~DcD� ~NcN ¼ ~DcðDx þNcR0Þ � ~NcðNx þDcR0Þ

¼ ð ~DcDx � ~NcNxÞ þ ð ~DcNc � ~NcDcÞR0

¼ I . ðA:3Þ

By using the fact that ~DcD� ~NcN ¼ L, where L;L�1 2 RH1 for internal stability of the closed-
loop system, thus, F ¼ ND�1 satisfies TðF ; ĜcÞ 2 RH1.
Conversely, suppose F has a rcf with F ¼ ND�1 which satisfy TðF ; ĜcÞ 2 RH1, Z:¼ ~DcD�
~NcN is invertible over RH1. Computing R0 with the equation

NZ�1 ¼ Nx þDcR0, (A.4)
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one obtains

R0 ¼ D�1c ðNZ�1 �NxÞ. (A.5)

With the Bezout identity

Dx þNcR0 ¼ Dx þNcD
�1
c ðNZ�1 �NxÞ

¼ ~D
�1

c
~DcDx þ ~D

�1

c
~NcðNZ�1 �NxÞ

¼ ~D
�1

c ð
~DcDx � ~NcNx þ ~NcNZ�1Þ

¼ ~D
�1

c ðZ þ
~NcNÞZ

�1

¼ ~D
�1

c
~DcDZ�1

¼ DZ�1 ðA:6Þ

and the computation of F follows:

F ¼ ND�1 ¼ NZ�1ZD�1 ¼ ðNx þDcR0ÞðDx þNcR0Þ
�1. (A.7)

From (A.4) and (A.6), it can be observed that NcR0 2 RH1 and DcR0 2 RH1, then

R0 ¼ ð ~DxDc � ~NxNcÞR0 ¼ ~Dx DcR0� ~Nx NcR0 2 RH1: & (A.8)
Appendix B. Proof of Lemma 2

From Fig. 3, the relationship between intermediate signal x and reference signal r can be easily
obtained

x ¼ ðDx � ĜcNxÞ
�1r ¼ ðDx � ĜcNxÞ

�1
ðu1 � Ĝcy1Þ

¼ ðDx � ĜcNxÞ
�1
½�Ĝc I �

y1

u1

" #
. ðB:1Þ

Pre-multiplying Ĝc to the first equation of Eq. (7) and then subtracting second equation of Eq. (7)
yields D� ĜcN ¼ Dx � ĜcNx and one obtains

ðI � ĜcF Þ
�1
¼ DðDx � ĜcNxÞ

�1. (B.2)

The data coming from the plant F operating with positive feedback Ĝc under closed-loop can be
described as follows:

y1

u1

" #
¼

FðI � ĜcF Þ
�1

ðI � ĜcF Þ
�1

" #
r

¼
NðDx � ĜcNxÞ

�1

DðDx � ĜcNxÞ
�1

" #
r
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¼
NxðDx � ĜcNxÞ

�1
þDcR0ðDx � ĜcNxÞ

�1

DxðDx � ĜcNxÞ
�1
þNcR0ðDx � ĜcNxÞ

�1

" #
r

¼
Nx

Dx

" #
xþ

Dc

Nc

" #
R0x. ðB:3Þ

Computing y1 � Fxu1 with Fx ¼ NxD�1x , yields

y1 � Fxu1 ¼ ðDc � FxNcÞR0x. (B.4)

Define z:¼ðDc � FxNcÞ
�1
ðy1 � Fxu1Þ which is Eq. (14), then Eq. (B.4) reduces to Eq. (12). &
Appendix C. Proof of Lemma 3

Define x̄ ¼ ½x1; x2�
T and z̄ ¼ ½z1; z2�

T where z1 ¼ R̂x1 and z2 ¼ Dx2. With the rcf ðN̂; D̂Þ of the
feedforward filter F̂ given by Eq. (8) and the rcf ðN̄c; D̄cÞ of the acoustic coupling Gc given by
Eq. (16), x̄ can be written as a function of z̄ and z̄ as a function of x̄ via

x̄ ¼
0 1

1 0

� �
z̄ (C.1)

and

z̄ ¼
R̂ 0

0 D

" #
x̄. (C.2)

From Eqs. (C.1) and (C.2), the closed-loop connection between x2 and z2 can be written as

z2 ¼ Dx2,

x2 ¼ z1 ¼ R̂x1 ¼ R̂z2.

With R̂ 2 RH1 and by use of the small gain theory, the closed-loop system is well posed and
internal stable for all D 2 RH1 if and only if

kDR̂k1o1. (C.3)

Similarly, the closed-loop connection between x1 and z1 can also be obtained with the same
procedure, and the same result (C.3) is obtained. &
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